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Abstract
The Maxwell–Dirac equations are the equations for electronic matter, the
‘classical’ theory underlying QED. The system combines the Dirac equations
with the Maxwell equations sourced by the Dirac current. A stationary
Maxwell–Dirac system has ψ = e−iEtφ, with φ independent of t. The system
is said to be isolated if the dependent variables obey quite weak regularity and
decay conditions. In this paper, we prove the following strong localization
result for isolated, stationary Maxwell–Dirac systems,

• there are no embedded eigenvalues in the essential spectrum, i.e. −m �
E � m;

• if |E| < m then the Dirac field decays exponentially as |x| → ∞;
• if |E| = m then the system is ‘asymptotically’ static and decays

exponentially if the total charge is non-zero.

PACS numbers: 11.10.Lm, 11.10.−z, 12.90.+b, 13.40.−f

1. Introduction

The Maxwell–Dirac system consists of the Dirac equation

γ α(∂α − ieAα)ψ + imψ = 0 (1)

with electromagnetic interaction given by the potential Aα; and the Maxwell equations (sourced
by the Dirac current, jα),

Fαβ = ∂αAβ − ∂βAα ∂αFαβ = −4πejβ = −4πeψ̄γβψ. (2)

Most studies of the Dirac equation treat the electromagnetic field as given and ignore the
Dirac current as a source for the Maxwell equations, i.e. these treatments ignore the electron
‘self-field’. A comprehensive survey of these results can be found in the book by Thaller [1].
This is not surprising, inclusion of the electron self-field via the Dirac current leads to a very
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difficult, highly non-linear set of partial differential equations. So difficult in fact that the
existence theory and solution of the Cauchy problem was not completed until 1997—seventy
years after Dirac first wrote down his equation! In a stunning piece of non-linear analysis,
worked out over almost a twenty year period, Flato et al [2] solved the Cauchy problem for
small initial data. Other contributors to this work on the existence of solutions would include
Gross [3], Chadam [4], Georgiev [5], Esteban et al [6] and Bournaveas [7].

There are no known non-trivial, explicit solutions, i.e. exact solutions in terms of
elementary functions, to the Maxwell–Dirac equations in 1 + 3 dimensions—all known
solutions involve some numerical work. These solutions do, however, exhibit interesting
non-linear behaviour which would not have been apparent through perturbation expansions.
The particular solutions found in [8–10] exhibit just this sort of behaviour—localization and
charge screening. See also Das [11] and the more recent work of Finster et al [12].

Finster et al also point out in [13] that solving the system (Einstein–Maxwell–Dirac
system in their case) gives, in effect, all the Feynman diagrams of the quantum field theory,
with the exception of the Fermionic loop diagrams. Study of the Maxwell–Dirac system
should provide an interesting insight into non-perturbative QED.

The aim of the present work is to obtain qualitative information on stationary solutions
of the Maxwell–Dirac system, in doing so one would hope to be able to say something about
Maxwell–Dirac models of some simple natural systems involving the electron. In fact, it is
surprising that so little is understood about these systems. There is no Maxwell–Dirac model
for a single isolated electron. If we compare the situation to that in the other great physical
theory of the 20th century, General Relativity, the situation could not be more stark. There are
a host of solutions to Einstein’s equations representing single, isolated gravitating bodies.

In this paper we will prove the following result:

Main theorem. A stationary, isolated Maxwell–Dirac system has no embedded eigenvalues,
i.e. −m � E � m.

If |E| < m then the Dirac field, decays exponentially as |x| → ∞.
If |E| = m then the system is ‘asymptotically static’ and, if the system has non-vanishing
total charge, decays exponentially as |x| → ∞.

The content of the theorem will be established through theorems 1 to 5 in sections 4
to 7. Parts of the theorem (e.g., no embedded eigenvalues) are reasonably well known under
somewhat different assumptions—see for instance the book by Thaller [1] and the work of
Berthier and Georgescu [14]—although the approach taken here is rather different in that the
fields are subject to only weak regularity and decay conditions in the asymptotic spatial region.
This approach means that we find an explicit expression for E in terms of the limiting values
of the field variables.

The paper is organized as follows. First, we give a brief overview of 2-spinor methods
applied to the Maxwell–Dirac equations (some details of 2-spinor calculus may also be found
in the appendices). In section 3 the definitions of stationary, isolated systems are given and
some simple consequences are explored. In section 4 we address the important question
of embedded eigenvalues in the spectrum of the Dirac operator, the main results being
proposition 1 and theorem 1. In section 5 we examine regularity and decay issues with
the main results given in theorems 2 and 3. The next section, section 6, looks at the special
case |E| = m and its relation to a generalization of the static systems of [16]. In section 7 we
prove the exponential decay of the Dirac field in the |E| = m case. Finally, in section 8, we
conclude with a brief discussion of the results.
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2. The Maxwell–Dirac Equations

In this section, we give a very brief account of the 2-spinor formulation of the Maxwell–Dirac
equations, details may be found in [9], some of the ‘mechanics’ of the 2-spinor formalism are
collected in appendix A at the end of the paper.

In [9], the 2-spinor form of the Dirac equations was employed to solve (1) for the
electromagnetic potential, under the non-degeneracy condition jαjα �= 0. In terms of 2-
spinors—see below—the non-degeneracy condition can be written as uCvC �= 0, since
jαjα = 2|uCvC |2. Requiring Aα to be a real four-vector gives a set of partial differential
equations in the Dirac field alone, the reality conditions.

For 2-spinors uA and vB (see [15] for an exposition of the 2-spinor formalism), we have

ψ =
(

uA

v̄Ḃ

)
with uCvC �= 0 (non-degeneracy)

where A,B = 0, 1, Ȧ, Ḃ = 0̇, 1̇ are 2-spinor indices. The Dirac equations are

(∂AȦ − ieAAȦ)uA +
im√

2
v̄Ȧ = 0 (∂AȦ + ieAAȦ)vA +

im√
2
ūȦ = 0 (3)

where ∂AȦ ≡ σαAȦ∂α and AAȦ = σαAȦAα; here σαAȦ are the Infeld–van der Waerden
symbols.

The electromagnetic potential is (see [9] for details),

AAȦ = i

e(ucvc)

{
vA∂BȦuB + uA∂BȦvB +

im√
2
(uAūȦ + vAv̄Ȧ)

}
. (4)

The reality conditions are,

∂AȦ(uAūȦ) = − im√
2
(uCvC − ūĊ v̄Ċ )

∂AȦ(vAv̄A) = im√
2
(uCvC − ūĊ v̄Ċ ) (5)

uA∂AȦv̄Ȧ − v̄Ȧ∂AȦuA = 0.

The Maxwell equations are,

∂αFαβ = −4πejβ = −4πe
√

2σAȦ
β (uAūȦ + vAv̄Ȧ). (6)

The equations (4), (5) and (6) are entirely equivalent to the original Maxwell–Dirac
equations, (1) and (2).

3. Isolated, stationary Maxwell–Dirac systems

We recall the definitions of [16] for stationary and isolated systems.

Definition 1. A Maxwell–Dirac system is said to be stationary if there is a gauge in which
ψ = eiωtφ, with the bi-spinor φ independent of t. Such a gauge will be referred to as a
stationary gauge.

Clearly, a stationary gauge is not unique—any gauge transformation ψ → eiωtψ

leaves the system in a stationary gauge. Note that under such a gauge change we have,
Aα → Aα − ω

e
δα

0 . We are interested in isolated systems, i.e. systems for which the fields
decay suitably as |x| → ∞, in this case we will require that Aα → 0 as |x| → ∞ in some
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stationary gauge. In this particular gauge we will write ψ = e−iEtφ, for the stationary gauge
in which A0 → 0 as |x| → ∞. Note that for any stationary system in a stationary gauge Aα

is independent of time, t, (see equation (4)).
In most physical processes that we would wish to model using the Maxwell–Dirac system,

we would be interested in isolated systems—systems where the fields and sources are largely
confined to a compact region of R

3. This requires that the fields decay sufficiently quickly as
|x| → ∞.

The best language for the discussion of such decay conditions and other regularity issues is
the language of weighted function spaces: specifically weighted classical and Sobolev spaces.
In [16] the weighted Sobolev spaces, Wk,p

δ , were used following the definitions of [17]. These
definitions have the advantage that the decay rate is explicit: under appropriate circumstances

a function in W
k,p

δ behaves as |x|δ for large |x|. An element, f , of W
k,p

δ has σ
−δ+|α|− 3

p ∂ |α|f
in Lp for each multi-index α for which 0 � |α| � k; here σ =

√
1 + |x|2 and we are working

on R
3 (or some appropriate subset thereof )—see [17] or [18] and [19] (the latter papers use

a different indexing of the Sobolev spaces). We will make use of the Sobolev inequality and
frequent use of the multiplication lemma.

Sobolev inequality (see [17, 18]). If f ∈ W
k,p

δ then

(i)

‖f ‖ np

(n−kp)
,δ � C‖f ‖k,q,δ if n − kp > 0 and p � q � np

(n − p)

(ii)

‖f ‖∞,δ � C‖f ‖k,p,δ if n − kp < 0 and |f (x)| = o(rδ) as r → ∞.

Multiplication lemma (see [18]). Pointwise multiplication on Eρ is a continuous bilinear
mapping

W
k1,2
δ1

× W
k2,2
δ2

→ W
k,2
δ

if k1, k2 � k, k < k1 + k2 − n/2 and δ > δ1 + δ2.

We will be interested in the asymptotic region (spatially) of the Maxwell–Dirac system,
which we denote by Eρ = R

3\Bρ , where Bρ is the ball of radius ρ. We will take our fields
to be elements of the function spaces W

k,p

δ (Eρ) for certain values of the indices k, p and
δ. Before introducing the precise definition of an isolated system, we must (following [16])
introduce some notation.

Suppose we have a stationary system and we are in a stationary gauge for which Aα → 0
as |x| → ∞. Write, uA = e−iEtUA and v̄Ȧ = e−iEt V̄ Ȧ with UA, VA and Aα all independent
of time, t. Note that uCvC = UCV C is a gauge and Lorentz invariant complex scalar function,
this means we can introduce a (unique up to sign) ‘spinor dyad’ {oA, ιB} with ιAoA = 1—some
facts on 2-spinor dyads are collected in appendix A at the end of the paper. The dyad is defined
as follows, let UCV C = R eiχ—where R and χ are real functions—then write,

UA =
√

R ei χ

2 oA and VA =
√

R ei χ

2 ιA.

Note that we must have R > 0 (almost everywhere) because of our non-degeneracy
condition.
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We can now define our isolated systems, note this definition is a little more general than
the definition of [16].

Definition 2. A stationary Maxwell–Dirac system will be said to be isolated if, in some
stationary gauge, we have

ψ = e−iEt
√

R

(
e

iχ
2 oA

e− iχ
2 ῑȦ

)

with E constant and
√

R ∈ W
3,2
−τ (Eρ); e

i
2 χoA, e

i
2 χ ιA ∈ W 3,2

ε (Eρ) and Aα ∈ W
2,2
−1+ε(Eρ), for

some τ > 3
2 , ρ > 0 and any ε > 0.

Remarks.

• This definition ensures, after use of the Sobolev inequality and the multiplication lemma,
that ψ = o(r−τ+ε) and Aα = o(r−1+ε).

• Note our condition places regularity restrictions on the fields in the region Eρ only. In the
interior of Bρ there are no regularity assumptions.

• A minimal condition that one may impose on the Dirac field is that it have finite total
charge in the region Eρ , this amounts to∫

Eρ

j 0 dx =
∫

Eρ

(|U0|2 + |U1|2 + |V 0|2 + |V 1|2) dx

=
∫

Eρ

R(|o0|2 + |o1|2 + |ι0|2 + |ι1|2) dx < ∞.

This, of course, simply means that UA and V A are in L2(Eρ). So UA and V A would have
L2 decay at infinity; roughly, they would decay faster than |x|− 3

2 , i.e. we require at least
τ > 3

2 .
• The spherically symmetric solution of [9] provides an excellent example of an isolated,

stationary and static Maxwell–Dirac system.

With our assumption that the Maxwell–Dirac system is isolated and stationary, we
can impose the Lorenz gauge condition, without altering the above regularity and decay
assumptions on Aα. To see this we note that

∂αA
α =

3∑
j=1

∂jA
j ∈ W

1,2
−2+ε(Eρ)

and that the Laplacian, �, gives an isomorphism W 3,2
ε → W

1,2
−2+ε (we may assume ε < 1)—see

[20, 21] (and also [17–19]). This means there is a unique solution, � ∈ W 3,2
ε (Eρ), of the

equation

�� + ∂αA
α = 0.

Consequently, for the gauge change Aα → Âα = Aα + ∂α� we still have Âα ∈ W
2,2
−1+ε , with

Âα satisfying the Lorenz gauge condition.
The electromagnetic potential of our stationary, isolated Maxwell–Dirac system will be

taken to satisfy the two equations,

�Aα = 4πe
√

2σαAȦR(oAōȦ + ιAιȦ) (7)
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∂αA
α =

3∑
j=1

∂Aj

∂xj
= 0. (8)

To end this section we present a simple result which we will need in the following sections.

Lemma 1. For a stationary and isolated Maxwell–Dirac system, in the Lorenz gauge,

A0 − q0

|x| ∈ W
5,2
−η (Eρ) q0 a constant and (9)

Aj ∈ W
5,2
−η (Eρ) j = 1, 2, 3 and η = 2(τ − 1) > 1. (10)

Proof. Firstly we note that the source term of the Maxwell equation (7) is in W
3,2
−2τ+2ε(Eρ), i.e.

jα ∈ W
3,2
−2τ+2ε(Eρ). The Laplacian gives an isomorphism between W

5,2
−2(τ−ε−1) and W

5,2
−2τ+2ε

see [20, 21] (also [17–19]). So there exists an aα ∈ W
5,2
−2(τ−ε−1) = W

5,2
−η such that,

�aα = 4πejα.

Now, as Aα ∈ W
2,2
−1+ε (Eρ), we have

Aα = qα

|x| + aα,

where the qα are constants. Applying the Lorenz condition we find qj = 0, for j = 1, 2, 3.
�

We can improve the decay rates here to higher (negative) order harmonic polynomials,
at the expense of regularity, by using the Dirac equations to get jα ∈ W

2,2
−2(τ+1)+2ε(Eρ)—but

lemma 1 is sufficient for our purposes.
The constant q0 is the total electric charge of the system (i.e., the electric charge of the

Dirac field plus the charge due to any external sources in Bρ ); this is easily seen by taking a
Gauss integral over the sphere at infinity of the electrostatic field (given by the gradient of A0).

4. No Embedded eigenvalues

A famous theorem of H Weyl asserts the invariance of the essential spectrum of the perturbation
of an operator if the difference of the resolvents of the perturbed and original operators is
compact, see section 4.3.4 of [1]. In standard notation we have, for a stationary system with
ψ = e−iEtφ,

Hφ = Eφ with H = γ 0
3∑

j=1

γ j

(
−i

∂

∂xj
+ eAj

)
+ (γ 0m − eA0)

the free operator, H0, has Aα = 0. Consequently, we have

Proposition 1. The Dirac Hamiltonian operator H of a stationary and isolated Maxwell–Dirac
system has the same essential spectrum as the free operator, i.e.

σess(H) = σess(H0) = σ(H0) = (−∞,−m] ∪ [m,∞).

Proof. Note that H satisfies the conditions of section 4.3.4 in [1], because of our decay
assumptions on the electromagnetic potential. So the theorem follows as a simple adaption of
the theorem of [1]. �
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We will now prove that for our stationary isolated systems there are no embedded
eigenvalues, E (the ‘energy’).

Theorem 1. A stationary and isolated Maxwell–Dirac system has no embedded eigenvalues
E, i.e. −m � E � m. In particular, the following limit exists,

E

m
= lim

|x|→∞
cos χ√
1 + 1

2λ2
where λ2 =

3∑
j=1

(lj + nj )2

with lα = σα

AȦ
oAōȦ and nα = σα

AȦ
ιAῑȦ.

Remarks.

• The result needs the Maxwell equations only in order to derive the decay result for Aα

of lemma 1. The result remains true for the Dirac equation alone if we assume the
appropriate decay for Aα.

• The only conditions required are the rather weak regularity and decay conditions of an
isolated system. No positivity conditions on the potential are required, cf section 4.7.2
of [1].

Proof. The proof is remarkably simple, it is a matter of exploiting the notation introduced
in definition 2. We begin by re-writing the 2-spinor form of the Dirac equations, (3), in this
notation. We have,

oA

2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦoA − ieBAȦoA +

im√
2

e−iχ ῑȦ = 0

ιA

2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦιA + ieBAȦιA +

im√
2

e−iχ ōȦ = 0

(11)

where Bα = Eδα
0 + Aα .

We combine these two equations into a single (equivalent) equation which gives the
derivative ∂αR

R
+ i∂αχ . To do this multiply the first equation by ιB and the second by oB and

subtract. Using oAιB − oBιA = εAB (see appendix A), we have

∂AȦR

R
+ i∂AȦχ − 2i(ιAoB + ιBoA)BB

Ȧ + 2
(
ιA∂B

ȦoB − oA∂B
ȦιB

)
+

√
2im(ιAῑȦ − oAōȦ) e−iχ = 0. (12)

We now use the multiplication lemma to place the terms of the equation into an appropriate
weighted Sobolev space:

• ∂AȦχ ∈ W
2,2
−1+2ε (Eρ), since (from definition 2),

eiχ = ei χ

2 ιA ei χ

2 oA ∈ W
3,2
2ε (Eρ);

• (ιAoB + ιBoA)BB
Ȧ = (ιAoB + ιBoA)

(
Eσ 0B

Ȧ + AB
Ȧ

)
, breaking this into two terms we

have,

(ιAoB + ιBoA)Eσ 0B
Ȧ ∈ W

3,2
2ε (Eρ) (ιAoB + ιBoA)AB

Ȧ ∈ W
2,2
−1+2ε (Eρ)

this last inclusion uses lemma 1;
• ιA∂B

ȦoB − oA∂B
ȦιB ∈ W

2,2
−1+2ε (Eρ).
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So that equation (12) implies,

∂AȦR

R
− 2i(ιAoB + ιBoA)Eσ 0B

Ȧ +
√

2im(ιAιȦ − oAōȦ) e−iχ ∈ W
2,2
−1+2ε (Eρ). (13)

We now contract equation (13) with oAōȦ and so on. Using, the results of appendix A (in
particular the last two facts), we have, after splitting the resulting equations into real and
imaginary parts,

∂αR

R
+

√
2m sin χ(nα − lα) + i(m0 − m̄0)E(m0m̄α − m̄omα) ∈ W

2,2
−1+4ε(Eρ) (14)

(l0 − n0), (m0 + m̄0)E, (l0 + n0)E −
√

2m cos χ ∈ W
2,2
−1+4ε(Eρ). (15)

Now (using appendix A),

l0 + n0 = 1√
2

(|o0|2 + |o1|2 + |ι0|2 + |ι1|2
)

> 0

and

(lα + nα)ηαβ(lβ + nβ) = (l0 + n0)2 −
3∑

j=1

(lj + nj )2 = 2

here ηαβ is the Minkowski metric. So we have,

1√
2
(l0 + n0) = 1√

2
(l0 + n0) =

√√√√1 +
1

2

3∑
j=1

(lj + nj )2 =
√

1 +
1

2
λ2.

From the last inclusion of equation (15) we have

1√
2
(l0 + n0)E − m cos χ =

√
1 +

1

2
λ2E − m cos χ ∈ W

2,2
−1+4ε(Eρ).

Note that,
(
1 + 1

2λ2
)− 1

2 ∈ W
3,2
2ε and consequently,

E

m
− cos χ√

1 + 1
2λ2

∈ W
2,2
−1+6ε(Eρ).

Finally, from the Sobolev inequality we have,∣∣∣∣∣∣
E

m
− cos χ√

1 + 1
2λ2

∣∣∣∣∣∣ < C|x|−1+6ε

for any ε > 0 and some constant C. Hence the limit |x| → ∞ of the left-hand side exists and
is zero, which completes the proof. �

5. Regularity and decay

A stationary Maxwell–Dirac system is an elliptic system of partial differential equations. So
it should be a simple matter to apply the theory of elliptic regularity to obtain the best possible
regularity results for the Maxwell and Dirac fields. That this is indeed the case is demonstrated
in the next theorem.

Theorem 2. A stationary Maxwell–Dirac system for which, UA, VA ∈ L2(Eρ) and
Aα ∈ L1

loc(Eρ), is C∞, i.e. U,V and A are in C∞(Eρ).
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Proof. First we note that we can always find a gauge transformation which takes A into the
Lorenz gauge while leaving it in the same Lebesgue space.

We have a set of Poisson equations for the A (equation (7)), and the elliptic Klein–Gordon
equations (B.2) (i.e., the second-order equations derived from the first-order Dirac equations).
These equations take the form,

�Aα = 4πejα �UA + 2ie
3∑

j=1

Aj∂jUA = (m2 − E2)UA + hB
AUB

where hB
A is a quadratic function of the A; with a similar equation for the V . As U and V

are in L2(Eρ), jα is in L1(Eρ), so the A must be in L3
loc(Eρ). Putting this information into

the U and V equations, we conclude (after the use of the Hölder inequality) that the hA
BUA

are in L
6
5

loc(Eρ) and so the U and V are in L3
loc(Eρ) (elliptic regularity). We can now

conclude that all the fields are in C0,α and then in C2,α . Iterating, we finally find that the
fields are in C∞(Eρ) (this is the classical ‘bootstrap’ argument, see ch 10 of [23] or ch 9
of [22]). �

In the case of the free Klein–Gordon equation it is easy to see that, in the stationary case,
if E2 − m2 < 0 then the Dirac field decays exponentially. This fact remains true for our
stationary isolated systems.

Theorem 3. For an isolated and stationary Maxwell–Dirac system, with E2 �= m2, the Dirac
fields U and V (along with all their derivatives) decay exponentially as |x| → ∞.

Proof. With E2 �= m2 and theorem 1 we have |E| < m.
We now cast our Klein–Gordon equations in a form suitable for the application

of the maximum principle. Firstly, �(|U |2) = Ū�U + U�Ū + 2|∇U |2, so using
equation (B.3):

�(|U0|2 + |U1|2) = 2ie
3∑

j=1

(U0A
j∂j Ū0 − Ū0A

j∂jU0U1A
j∂j Ū1 − Ū1A

j∂jU1)

+ 2(m2 − E2)(|U0|2 + |U1|2) + 2(|∇U0|2 + |∇U1|2)
− 2[2eEA0 + e2AαAα](|U0|2 + |U1|2) − ie(∂̄A − ∂Ā)(|U0|2 − |U1|2)
− 2ie[(−∂zA + ∂A3)U0Ū1 − (−∂zĀ + ∂̄A3)Ū0U1]. (16)

We will use the following comparison function,

w(x) = C0
e−√

2k|x|

|x| with C0 = ρ e
√

2kρ sup
|x|=ρ

[h(x)] and k > 0,

where h(x) = (|U0|2 + |U1|2 + |V0|2 + |V1|2); the supremum in the definition of C0 is well
defined and finite since we have by the Sobolev inequality, 0 < h(x) < C|x|−2(τ−ε), on Eρ ,
for ρ large enough. Note that we have �w − 2k2w = 0, on Eρ .

We show that

�[h(x) − w(x)] − 2k2[h(x) − w(x)] � 0.

The following inequalities will be needed—in each case we have used the Sobolev inequality
on the A (after use of lemma 1). Firstly,
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i
3∑

j=1

(U0A
j∂j Ū0 − Ū0A

j∂jU0U1A
j∂j Ū1 − Ū1A

j∂jU1)

= R

3∑
j=1

[Aj∂jχ(|o0|2 + |o1|2) + i(o0A
j∂j ō0

− ō0A
j∂jo0 + o1A

j∂j ō1 − ō1A
j∂jo1)]

> −2
C1

|x|R

> −C1

|x|R(|o0|2 + |o1|2 + |ι0|2 + |ι1|2)

= − C1

|x|(|U0|2 + |U1|2 + |V0|2 + |V1|2)

where we have used,

1 = |ιAoA| = |ι0o0 + ι1o1| � 1
2 (|o0|2 + |o1|2 + |ι0|2 + |ι1|2).

Next, in a similar vein, we have

−2[2eEA0 + e2AαAα] > −C2

|x|
−ie(∂̄A − ∂Ā)(|U0|2 − |U1|2) > −e|∂̄A − ∂Ā|(|U0|2 + |U1|2)

> − C3

|x|2 (|U0|2 + |U1|2)

−2ie[(−∂zA + ∂A3)U0Ū1 − (−∂zĀ + ∂̄A3)Ū0U1] > −2
C4

|x|2 |U0U1|

> − C4

|x|2 (|U0|2 + |U1|2)

here the Cj are positive constants.
With the use of equation (16) and the inequalities we have,

�[(|U0|2 + |U1|2)] �
[

2(m2 − E2) − C2

|x| − C3

|x|2 − C4

|x|2 −
]

(|U0|2 + |U1|2)

−C1

|x|h(x) + 2(|∇U0|2 + |∇U1|2).

There is, of course, an entirely similar equation for |V 0|2 + |V 1|2. Adding these two equations
gives, for every k such that 0 < k <

√
m2 − E2,

�[h(x) − w(x)] − 2k2[h(x) − w(x)]

�
[

2(m2 − E2 − k2) − C

|x|
]

h(x) + (|∇U0|2 + |∇U1|2 + |∇V0|2 + |∇V1|2)
� 0, for ρ large enough.

Applying the maximum principle on Eρ we see that the non-negative maximum of h(x) −
w(x) must occur at infinity or on |x| = ρ. However,

lim
|x|→∞

[h(x) − w(x)] = 0 and [h(x) − w(x)]|x|=ρ � 0.

We conclude that [h(x) − w(x)] � 0 on Eρ , so that
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|U0|2 + |U1|2 + |V 0|2 + |V 1|2 � C0
e−√

2k|x|

|x| .

So the U and V decay exponentially.
Differentiating the Klein–Gordon equations we can use the same procedure to show

that the first derivatives decay exponentially. After taking account of theorem 2, we can
iterate this procedure once we note that the solution for Aα can be written as the sum of
an harmonic polynomial (of negative degree) and the convolution of jα and the appropriate
Green’s function. �

This theorem does not deal with decay of solutions in the case |E| = m. It is clear that
the solutions in this case need not decay exponentially. The spherically symmetric solution of
[9] is a case in point, this solution has |E| = m and R ∼ C0

|x|4 as |x| → ∞.
The case |E| = m is in a sense quite unique, as we will see in the next section.

6. |E| = m and asymptotically static systems

In this section, we will prove a theorem which neatly ties together the |E| = m case and the
concept of an asymptotically static solution.

In [16] the idea of a static Maxwell–Dirac system was exploited to show that if the system
was also stationary and isolated then the system was necessarily electrically neutral, with
|E| = m. A static Maxwell–Dirac system is one for which (in some Lorentz frame) the spatial
components of the Dirac current vanish. With the Dirac current written as,

jα =
√

2σα

AȦ
(uAūȦ + vAv̄Ȧ) =

√
2R(lα + nα) =

√
2Rσα

AȦ
(oAōȦ + ιAῑȦ)

we would require for a static system that lk + nk = 0, k = 1, 2, 3. We will now generalize this
concept to that of an asymptotically static Maxwell–Dirac system.

Definition 3. A Maxwell–Dirac system will be called asymptotically static, with decay rate κ

and differentiability index s, if lk + nk = σk

AȦ
(oAōȦ + ιAῑȦ) ∈ W

s,2
−κ (Eρ) for some ρ, κ > 0

and k = 1, 2, 3.

So an asymptotically static system decays towards a static system, as |x| → ∞. The unit
vector, 1√

2
(lα + nα) (in the direction of the current, jα) has only a time-like component in the

limit as |x| → ∞.
To take full advantage of this definition, we will need to recast it in terms of the individual

variables oA, and ιA, this is done in the following lemma.

Lemma 2. An isolated and stationary Maxwell–Dirac system is asymptotically static if and
only if

ι0 − ō0̇ ι1 − ō1̇ ∈ W
t,2
−κ+ε(Eρ)

where t = min[3, s].

Proof. First assume the system is asymptotically static with decay rate κ and differentiability s.
From the proof of theorem 1 and definition 3, we have

(|o0|2 + |o1|2 + |ι0|2 + |ι1|2)2 − 4 = 2(l0 + n0)2 − 4

= 2
3∑

k=1

(lk + nk)2 ∈ W
s,2
−2κ (Eρ).
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Consequently, as [(|o0|2 + |o1|2 + |ι0|2 + |ι1|2) + 2]−1 ∈ W
3,2
2ε (Eρ), we have

|o0|2 + |o1|2 + |ι0|2 + |ι1|2 − 2 ∈ W
t,2
−2κ+2ε(Eρ).

Writing out the lk + nk explicitly we have,

−(o0ō1̇ + o1ō0̇) + (ι0 ῑ1̇ + ι1 ῑ0̇) ∈ W
s,2
−κ (Eρ)

−(−o0ō1̇ + o1ō0̇) + (−ι0 ῑ1̇ + ι1 ῑ0̇) ∈ W
s,2
−κ (Eρ)

−|o0|2 + |o1|2 + |ι0|2 − |ι1|2 ∈ W
s,2
−κ (Eρ).

So we conclude that,

−o0ō1̇ + ι1 ῑ0̇ ∈ W
s,2
−κ (Eρ) and |o0|2 + |ι1|2 − 1, |o1|2 + |ι0|2 − 1 ∈ W

t,2
−κ (Eρ).

Writing these equations as a single matrix equation,(
o1 −ι0

o0 ι1

) (
ō0̇ − ι0 ō1̇ − ι1

ῑ1̇ − o1 o0 − ῑ 0̇

)
=

(
o1ō0̇ − ι0 ῑ1̇ |o1|2 + |ι0|2 − 1

|o0|2 + |ι1|2 − 1 o0ō1̇ − ι1 ῑ 0̇

)

is in W
t,2
−κ (Eρ). The first matrix on the left has determinant 1 and inverse,(

o1 −ι0

o0 ι1

)−1

=
(

ι1 ι0

−o0 o1

)

which is in W 3,2
ε (Eρ). The result now follows from the multiplication lemma after applying

this inverse matrix to the previous equation.
Next, assuming ι0 − ō0̇, ι

1 − ō1̇ ∈ W
t,2
−κ+ε(Eρ), we easily find that lk + nk ∈ W

t,2
−κ+2ε(Eρ),

k = 1, 2, 3, and any ε > 0. So the system is asymptotically static. �

Now to our theorem connecting the two apparently unrelated notions, the condition
|E| = m and the idea of an asymptotically static system.

Theorem 4. A stationary and isolated Maxwell–Dirac system is asymptotically static if
|E| = m.

Proof. Assume the system is stationary and isolated with |E| = m; write E = εm, with
ε = ±1.

The proof is very simple, it simply involves manipulating expressions obtained in the
proof of theorem 1. From that proof we have,√

1 + 1
2λ2 − ε cos χ ∈ W

2,2
−1+4ε(Eρ).

Note that we must have ε cos χ � 0, for ρ large enough, so√
1 + 1

2λ2 + ε cos χ ∈ W
2,2
4ε (Eρ).

Multiplying the last two expressions and using the multiplication lemma, we have

sin2 χ + 1
2λ2 ∈ W

2,2
−1+8ε (Eρ).

These equations together with the fact that both sin2 χ and lk + nk are in W
3,2
2ε (Eρ) enable us

to conclude that

sin χ, lk + nk ∈ W
2,2
− 1

2 +4ε
(Eρ).

The system is, according to definition 3, asymptotically static. �
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7. Exponential decay, the |E| = m case

In this section we will prove that the Dirac field decays exponentially in the |E| = m case as
well—at least when the total charge q0 �= 0. In fact we obtain tight bounds on the decay of
the Dirac field in this case.

Theorem 5. The Dirac field for a stationary, isolated and asymptotically static Maxwell–
Dirac system, with |E| = m, κ > 1, s = 3 (definition 3) and q0 �= 0 decays exponentially as
|x| → ∞. In fact, there exists two positive constants C1 and C2 such that

C1
e−4

√
2mλ

√|x|

|x| 3
2

< R < C2
e−4

√
2mλ

√|x|

|x| 3
2

where λ > 0, λ2 = −εe
q0

m
is necessarily positive and E

m
= ε = ±1.

Remarks.

• The condition s = 3 is consistent with earlier differentiability requirements (cf
theorem 1)—it ensures that we have ‘enough differentiability’ of the Dirac field when it is
substituted into the Maxwell equations—the electromagnetic potential contains the first
derivatives of the Dirac field.

• The rather stronger decay condition κ > 1 can probably be relaxed to κ > 0 (or at least
κ > 1

2 − ε see proof of theorem 4) but at the expense of a much more complicated proof.
The present condition allows easy use of the multiplication lemma.

Before embarking on a proof of this theorem we will need a couple of preparatory lemmas.
In the course of proving the second of these two lemmas, we will also show incidentally that
the electric dipole moment must vanish. We are assuming that |E| = m and write E

m
= ε.

As cos χ → ε, with |x| → ∞ we can take χ = nπ + ζ , where (−1)n = ε and ζ → 0, as
|x| → ∞.

We require a more careful analysis of equation (12). The imaginary part of this equation
is,

∂αχ + 2(E + eA0)(n0lα − l0nα) + 2e

3∑
k=1

Ak(lknα − nklα) +
√

2m cos χ(nα − lα)

− i
[(

ōȦ∂AȦoA − oA∂AȦōȦ

)
nα +

(
ῑȦ∂AȦιA − ιA∂AȦῑȦ

)
lα

+
(
ōȦ∂A

ȦιA − ιA∂A
ȦōȦ

)
mα +

(
ῑȦ∂A

ȦoA − oA∂A
ȦῑȦ

)
m̄α

] = 0. (17)

Assuming the system is asymptotically static and making use of lemma 2 simple calculation
reveals,

ῑȦ∂AȦιA + oA∂AȦōȦ ∈ W
2,2
−κ−1+2ε(Eρ) ιA∂A

ȦōȦ − ōȦ∂A
ȦιA ∈ W

2,2
−κ−1+2ε(Eρ).

From lemma 2, n0 − l0 ∈ W
3,2
−κ+2ε(Eρ).

For α = k = 1, 2, 3 we make use of nk + lk ∈ W
3,2
−κ (Eρ) and our previous equation to get

2(n0lk − l0nk) − (l0 + n0)(lk − nk) = (n0 − l0)(lk + nk) ∈ W
3,2
−1−κ+6ε(Eρ).

Using lemma 1 and the asymptotic staticity of the system

2e

3∑
j=1

Aj(lj nk − nj lk) ∈ W
2,2
−κ−1+2ε(Eρ).
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Putting this all together in the equation for ∂kχ we have

∂kζ +
√

2

[
(εm + eA0)

1√
2
(l0 + n0) − εm cos ζ

]
(lk − nk) ∈ W

2,2
−1−κ+9ε(Eρ).

We need to refine our estimate for (l0 − n0)/
√

2, noting(
l0 + n0

√
2

)2

− 1 = 1√
2

3∑
j=1

(lj + nj )2 ∈ W
3,2
−2κ (Eρ)

and
[

1√
2
(l0 + n0) + 1

]−1 ∈ W
3,2
2ε (Eρ) we have

1√
2
(l0 + n0) − 1 ∈ W

2,2
−2κ+2ε(Eρ).

Now use this estimate, together with lemma 1 (to separate the monopole term) and the fact
that (lk − nk) + 2lk ∈ W

3,2
−κ (Eρ) (remember, lk = −lk), to get

∂kζ − 2
√

2εm

[
1 − cos ζ +

εeq0

m|x| +
εe

m
a0

]
lk ∈ W

2,2
−ν+9ε (Eρ)

where ν = min[2κ, 1 + κ]. For convenience we will write this equation in a 3-vector notation,
using ∇ to denote the gradient and l = (l1, l2, l3); note that (because of asymptotic staticity)
we have for the norm of l, |l|2 = l.l = 1

2 plus a term in W
s,2
−κ+ε (see proof of lemma 2). We

have,

∇ζ − 2
√

2εm

[
1 − cos ζ +

εeq0

m|x| +
εe

m
a0

]
l ∈ W

2,2
−ν+9ε (Eρ). (18)

We will also require the asymptotically static version of equation (14), the real part of
equation (12). Firstly, from lemma 2 we have that√

2m0 =
√

2σ 0
AȦ

oAῑ = −o0 ῑ
1̇ + o1 ῑ

0̇ ∈ W
3,2
−κ+2ε(Eρ).

We have, after using, (lk − nk) + 2lk ∈ W
3,2
−κ (Eρ),

1

R
∇R + 2

√
2εm sin ζ l ∈ W

2,2
− min[1,κ]+4ε(Eρ). (19)

Now, to the first of our two lemmas. In fact, this lemma actually gives us the exponential decay
result which we use to improve lemma 1 so that we may obtain the much tighter estimate
necessary for theorem 5.

Lemma 3. The Dirac field (and at least its first and second derivatives) of a stationary,
isolated, asymptotically static (with κ > 1, s = 3 and |E| = m) Maxwell–Dirac field decays
exponentially as |x| → ∞, provided q0 �= 0. In particular,

R < C
e−2k

√|x|

|x| for any k such that 0 < k < 2
√

2mλ

here λ2 = − εeq0

m
is necessarily positive.

Proof. We first note from theorem 4 that sin ζ ∈ W
2,2
− 1

2 +4ε
so, for ρ large enough,

ζ ∈ W
2,2
− 1

2 +4ε
(Eρ) and ∇ζ ∈ W

1,2
− 3

2 +4ε
(Eρ).

Now, taking the divergence of equation (19) and using (19) again to remove the |∇R|2
term,

1

R
�R − 4m2 sin2 ζ ∈ W

1,2
− 3

2 +ε
(Eρ) for any ε > 0.
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From the fact that ∇ζ ∈ W
1,2
− 3

2 +4ε
(Eρ) we have from (18),

1 − cos ζ +
εeq0

m|x| +
εe

m
a0 = 2 sin2 ζ

2
+

εeq0

m|x| +
εe

m
a0 ∈ W

1,2
− 3

2 +4ε
.

Our first observation is that εeq0 < 0, since from lemma 1 a0 ∈ W
5,2
−η with η > 1. We write

λ2 = − εeq0

m
, and take λ > 0. We can also use the last inclusion to estimate the term sin2 ζ .

We have,

sin2 ζ − 2λ2

|x| ∈ W
1,2
− min[ 3

2 ,η]+ε
(Eρ).

The second-order elliptic equation for R can now be written as

�R − 8m2

(
λ2

|x| + α

)
R = 0 where α ∈ W

1,2
− min[ 3

2 ,η]+ε
(Eρ). (20)

We will now use the maximum principle utilising a comparison function

v(x) = C
e−2k

√|x|

|x| for which �v −
(

k2

|x| − k

2|x| 3
2

)
v = 0.

Now,

�[R − v(x)] − 8m2

(
λ2

|x| + α

)
[R − v(x)] =

[
(8m2λ2 − k2)

1

|x| + α̃

]
v(x)

where α̃ ∈ W
1,2
− min[ 3

2 ,η]+ε
(Eρ). Consequently, for ρ large enough and for every k such that

0 < k < 2
√

2mλ we have,

�[R − v(x)] − 8m2

(
λ2

|x| + α

)
[R − v(x)] > 0.

Choosing C such that [R−v(x)]|x|=ρ � 0 we have by the maximum principle that R−v(x) <

0 on Eρ . Completing the proof of our lemma. �

Lemma 4. For a stationary, isolated asymptotically static Maxwell–Dirac system with
κ > 1, s = 3 and |E| = m we have the following estimates when q0 �= 0.

ζ − ε1

√
2λ√|x| +

ε1

4m|x| − ε1(16λ4m2 + 9)

96
√

2λm2|x| 3
2

∈ W
3,2
−2+ε (Eρ)

l = εε1√
2
(r̂ − u) with u ∈ W

3,2
− 1

2 +ε
(Eρ)

r̂.l − εε1√
2

∈ W
3,2
−1+ε and r̂ .u ∈ W

3,2
−1+ε

where r̂ is the radial unit vector and (ε1)
2 = 1.

Proof. In all that follows we are assuming that ρ is large enough that the necessary
expansions—e.g., sin ζ − ζ ∈ W

2,2
− 3

2 +ε
(Eρ) when sin ζ ∈ W

2,2
− 1

2 +ε
(Eρ)—can be made on Eρ .

We begin with the estimate,

sin2 ζ − 2λ2

|x| ∈ W
1,2
− min[ 3

2 ,η]+ε

from the proof of lemma 3. Write,

ζ =
√

2ε1λ√|x| + ζ1 where ε1 = ±1
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and substitute into equation (18)

∇ζ1 − ε1λ√
2|x| 3

2

r̂ − 2
√

2εm

[
2
√

2ε1λ√|x| ζ1 + ζ1
2

]
l ∈ W

2,2
−2+ε(Eρ).

We have kept only terms ‘less than order 1/|x|2’ on the left of the equation. The a0 from A0

is of order 1/|x|2, since we can now improve the result of lemma 1 using lemma 3—from
equation (7) we have �A0 = 4πe

√
2(l0 + n0)R so A0 must be the sum of an harmonic

polynomial (of negative degree) and a term which decays exponentially.
Starting with ζ1 ∈ W

2,2
− 1

2 +ε
(since ζ is) we have that ∇ζ1 ∈ W

1,2
− 3

2 +ε
, in the first instance.

But then our equation (above) implies that ζ1 ∈ W
1,2
−1+ε and that,

1

|x| r̂ + 4
√

2mεζ1l ∈ W− 3
2 +ε(Eρ).

Now write ζ1 = − εε2
4m|x| + ζ2 (ε2 = ±1) and repeat the process to find that ζ2 ∈ W

0,2
− 3

2 +ε
. As a

consequence we have the following estimates for ζ and l,

ζ −
√

2λε1√|x| +
εε2

4m|x| ∈ W
0,2
− 3

2 +ε
(Eρ)

l = ε2√
2
(r̂ − u) with u ∈ W

0,2
− 1

2 +ε
(Eρ).

Next we use the fact that, l.l − 1
2 ∈ W

3,2
−κ+ε , as the system is asymptotically static. We have,

l.l − 1
2 = 1

2 (−2r̂ .u + |u|2) ∈ W
3,2
−κ+ε .

It is a simple matter to show that for u ∈ W
3,2
2ε ∩ W

0,2
− 1

2 +ε
we have u ∈ W

3,2
− 1

2 +ε
: begin with a

function f in W
3,2
2ε ∩W

0,2
− 1

2 +ε
then integrate ∇.(σ 2δ−1f ∇f ) over Eρ to show that ∇f ∈ W

0,2
−1−δ+ε

for 0 < δ � 1
4 , iterate this process to eventually find ∇f ∈ W

0,2
− 3

2 +ε
which together with

f ∈ W
0,2
− 1

2 +ε
shows that f ∈ W

1,2
− 1

2 +ε
. Now repeat the process with ∂kf ∈ W

2,2
−1+ε ∩ W

0,2
− 3

2 +ε
,

and so on to eventually get f ∈ W
3,2
− 1

2 +ε
(Eρ). With u ∈ W

3,2
− 1

2 +ε
, we can use the multiplication

lemma to get |u|2 = u.u ∈ W
3,2
−1+ε . Next we use the fact that, l.l − 1

2 ∈ W
3,2
−κ+ε , as the system

is asymptotically static. We have,

l.l − 1
2 = 1

2 (−2r̂ .u + |u|2) ∈ W
3,2
−κ+ε .

So that r̂ .u ∈ W
3,2
−1+ε , as κ > 1.

We also note that an argument similar to that used above shows that as ζ2 ∈ W 3,2
ε ∩

W
2,2
− 1

2 +ε
∩ W

0,2
− 3

2 +ε
we must have ζ2 ∈ W

3,2
− 3

2 +ε
. We can now substitute,

ζ2 = α0

|x| 3
2

+ ζ3 where α0 = ε1
(16λ4m2 + 9 − 96m2d.r̂)

96
√

2λm2

here d is a constant vector arising from the expansion of εe
m

A0 = −λ2

|x| + d.r̂
|x|2 + O

(
1

|x|3
)
. We find

that ζ3 ∈ W
3,2
−2+ε . We note from equation (18) that θ̂ .∇ζ and φ̂.∇ζ are both in W

3,2
−2+ε—here θ̂

and φ̂ are the angular unit vectors orthogonal to r̂ . Consequently we must have d = 0.
So, as d gives rise to the electric dipole moment, we see that the electric dipole moment

must vanish.
We still have to show that ε2 = εε1 to obtain the precise statements of the lemma. This is

easily done by taking the estimates for sin ζ and l and substituting them into equation (19)—to
obtain exponential decay (rather than growth!) we require εε1ε2 = 1. �
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Proof of theorem 5. Armed with lemma 4 the theorem is remarkably simple to prove. We
start with equation (5), which can be written as

1

R
l.∇R +

√
2εm sin ζ + ∇.l = 0.

Which gives,

r̂ .∇R

R
− u.∇R

R
+ 2ε1m sin ζ +

2

r
− ∇.u = 0.

Using equation (19) we have (as u.l ∈ W
3,2
−1+ε )

u.∇R

R
∈ W

2,2
− 3

2 +ε
.

Noting that ∇.u ∈ W
2,2
− 3

2 +ε
, we have, using lemma 4,

r̂ .∇R

R
+ 2

√
2

mλ√|x| +
3

2|x| ∈ W
2,2
− 3

2 +ε
(Eρ).

Consequently, we have

R = K
e−4

√
2mλ

√|x|+β

|x|− 3
2

where β ∈ W
3,2
− 1

2 +ε
and K may depend on xi

|x| . From equation (19) we see that ln K ∈ W 3,2
ε so

that K is a bounded function. The Sobolev inequality implies |β| < C/|x|− 1
2 +ε . The result

now follows by bounding, Keβ . �

8. Discussion

The results of this paper show that under fairly weak asymptotic conditions the solutions
of the stationary Maxwell–Dirac equations are highly localized—the Dirac field decays
exponentially, the solutions are ‘particle-like’.

It is worth emphasizing again that our results are based purely on rather weak asymptotic
regularity and decay assumptions. Nothing is assumed about the behaviour of the fields in the
interior region Bρ . Of course, if we were looking at a complete solution we would need to
match the ‘interior’ to the ‘exterior’ asymptotic region.

Another important point to note is that all the results require the Maxwell equations only
to obtain the decay conditions of lemma 1 and the improved decay required for theorem 5. If
this decay is given, a priori, then the results apply to the ‘Dirac equation in an external field’
as it is usually presented.

One question which needs to be addressed is the possible extension of the electric neutrality
theorem of [16] to the asymptotically static case. But we leave this to a future paper.

Appendix A. 2-spinors and spinor dyads

We collect here a number of facts relating to 2-spinor dyads and their associated null vectors.
We give only a brief statement of the facts, for details the reader should consult the book of
Penrose and Rindler [15].

• 2-spinor indices are raised and lowered with εAB and εAB (summation on repeated indices),
ξA = εABξB and ξA = εBAξB for any 2-spinor ξA.



5680 C J Radford

• oAιB − oBιA = εAB and oAιB − oBιA = εAB , where

(εAB) = (εAB) =
(

0 1
−1 0

)
.

• oAιA = −oAιA = 1 and ōȦῑȦ = −ōȦῑȦ = 1.
• The van der Waerden symbols σα

AȦ
connect Minkowski vectors to 2-spinors and vice versa.

The
√

2
(
σk

AȦ
)

(with k = 1, 2, 3) are simply the Pauli matrices and
√

2
(
σ0

AȦ
)

is the

identity matrix. We have, σAȦ
α σβAȦ = ηαβ the Minkowski metric, and σαAȦσ α

BḂ =
εABεȦḂ .

• Because of these relations the null vectors lα = σα

AȦ
oAōȦ, nα = σα

AȦ
ιAῑȦ, mα = σα

AȦ
oAῑȦ

and m̄α = σα

AȦ
ιAōȦ form a null tetrad; with lα and nα real, and mα complex. We have,

lαlα = 0, nαnα = 0,mαmα = 0, lαmα = 0, lαm̄α = 0, nαmα = 0, nαm̄α = 0, lαnα = 1
and mαm̄α = −1.

• For any vector Xα we have,

Xα = (nβXβ)lα + (lβXβ)nα − (m̄βXβ)mα − (mβXβ)m̄α.

• oAōȦ∂AȦf = lα∂αf , ιAῑȦ∂AȦf = nα∂αf , and so on.

Appendix B. Explicit forms of the Dirac equations

In this appendix we collect together explicit forms of the Dirac and Klein–Gordon equations
for stationary Maxwell–Dirac systems.

In this section we use the notation ∂z = ∂
∂z

etc, ∂ = ∂x + i∂y , and for the electromagnetic
potential Aα,A = A1 + iA2.

The Dirac bi-spinor is,

ψ = e−iEt

(
UA

V̄ Ḃ

)
.

The Dirac equations are,

im

(
V̄ 0̇ − E

m
U0

)
− ∂̄U1 − ∂zU0 − ie[(A0 + A3)U0 + ĀU1] = 0

im

(
V̄ 1̇ − E

m
U1

)
− ∂U0 + ∂zU1 − ie[AU0 + (A0 − A3)U1] = 0

im

(
U1 − E

m
V̄ 1̇

)
+ ∂V̄ 0̇ − ∂zV̄

1̇ + ie[−(A0 + A3)V̄ 1̇ + AV̄ 0̇] = 0

im

(
U0 − E

m
V̄ 0̇

)
+ ∂̄V̄ 1̇ + ∂zV̄

0̇ + ie[ĀV̄ 1̇ − (A0 − A3)V̄ 0̇] = 0.

(B.1)

The Klein–Gordon equations are easily derived via differentiation of equations (B.1), we
give the results for U only,

�U0 + 2ie
3∑

j=1

Aj∂jU0 + {(E2 − m2) + 2eEA0 + e2AαAα

+ ie[∂z(A
0 + A3) + ∂̄A]}U0 + ie[∂zĀ + ∂̄(A0 − A3)]U1 = 0

(B.2)

�U1 + 2ie
3∑

j=1

Aj∂jU1 + {(E2 − m2) + 2eEA0 + e2AαAα

+ ie[−∂z(A
0 − A3) + ∂Ā]}U1 + ie[−∂zA + ∂(A0 + A3)]U0 = 0.
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Equation (4) gives the electromagnetic potential in terms of the U and V which may in
turn be written terms of R, χ and the o and ι. We give only the result for A0,

A0 = m

2e

[
e−iχ (|o0|2 + |o1|2 + |ι0|2 + |ι1|2) − 2E

m

]

+
i

2e

[(
∂̄R

R
+ i∂̄χ

)
ι0o1 + ∂̄(ι0o1) +

(
∂R

R
+ i∂χ

)
ι1o0 + ∂(ι1o0)

+

(
∂zR

R
+ i∂zχ

)
ι0o0 + ∂z(ι

0o0) −
(

∂zR

R
+ i∂zχ

)
ι1o1 − ∂z(ι

1o1)

]
. (B.3)
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